
3.1 Overview

To enable diffusion-based generation of ASTs from natural language instructions, we propose a data transfor-
mation pipeline that constructs a paired text-to-AST dataset from raw source code. The overall workflow is
illustrated in Figure 1.
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Figure 1: Pipeline overview

We begin with the nvidia/OpenCodeReasoning-2 dataset [24], which provides a large number of program-
ming task descriptions and corresponding code snippets in Python and C++. For each language, we parse the
source code using off-the-shelf language infrastructure—Python Language Services and Clang AST—to obtain
the original ASTs. These ASTs are then passed through an enrichment module, which performs:

• Simplification of redundant structural element and reduction of unnecessary AST depth,

• Reorganization of node layout for consistent and canonical structure,

• Contextual constraint annotation to embed program-level contextual semantics.

The result is a dataset that pairs each textual task description with an enriched AST, suitable for training
diffusion models that capture both syntactic and semantic regularities of real-world programs.

3.2 Text-to-code Dataset Selection

For the design and implementation of this prototype, we selected the nvidia/OpenCodeReasoning-2 dataset.
This dataset offers large-scale, task-oriented examples in two widely-used programming:

• Python: ∼1.40 million code solutions for 34,125 tasks

• C++: ∼1.17 million code solutions for 30,092 tasks

• Total: ∼2.57 million instances covering diverse competitive programming tasks

Each task-solution pair is stored in the dataset under the following format:

Table 1: Data format of dataset nvidia/OpenCodeReasoning-2

Column Description

id A unique id for each data instance
question id A unique id for each question
question The input competitive programming question.
solution The code portion of R1’s response.
dataset The name of the dataset from which this question is collected from.
split The name of the split of the dataset from which this question is collected from.
index An index to retrieve the input question from APPS/TACO dataset.

Table 1 summarizes the relevant fields used in our pipeline. The question field provides the natural
language problem description. Due to copyright limitations, the field is left blank in the dataset. However, the
authors provide a Python script to look up the questions from the task datasets using the dataset field and
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index field. The solution field contains the corresponding code implementation. Additional metadata such
as question id and split helps organize and trace the provenance of each example across source datasets like
APPS and TACO.

The above dataset is particularly well-suited for this project as a starting point due to its scale and task-
oriented structure. With over two million examples across Python and C++, it offers a diverse collection of
real-world programming problems paired with corresponding code solutions. This makes it an ideal foundation
for learning mappings from natural language instructions to structured code representations.

The contrast between a strongly typed language like C++ and a dynamically typed language like Python
provides two distinct design contexts for our prototype. C++ demands precise type resolution and enforces
rigid structural rules, while Python allows greater flexibility with implicit typing and similar syntax. By
supporting both, our pipeline must accommodate fundamentally different AST characteristics and enrichment
requirements. This dual-language prototype setup not only validates the generality of our approach but also
offers practical insights for extending the system to additional languages in the future.

3.3 Structural Representations of Programming Languages

To extract structured representations from the source code, we employ existing language-specific AST parsers
for Python and C++. These parsers allow us to convert raw code into ASTs, which serve as the basis for
further enrichment and dataset construction.

For Python, we adopt the built-in ast module from the standard library, which provides a concrete AST
representation of parsed Python source code. To convert the AST into a machine readable format, we use
the third-party ast2json utility library, which serializes the AST into a nested JSON format. Each node is
represented as a JSON object whose type is marked by its field ” type”, along with fields corresponding to its
children and other attributes. Figure 2 demonstrates the major hierarchical structure of certain types of node
in an AST, including assignment statement, for-loop statement, and function call expression.

{

  : ,

  : [  ],

  : {  },

  
}

"_type"
"targets"
"value"

"Assign"
/* targets */

/* value */
// Others


(a) Assignment statement

{

  : ,

  : {  },

  : {  },

  : [  ],

  
}

"_type"
"target"
"iter"
"body"

"For"
/* target */

/* iterator */
/* elements */

// Others


(b) For statement

{

  : ,

  : {  },

  : [  ],

  
}

"_type"
"func"
"args"

"Call"
/* function */
/* arguments */

// Others


(c) Function call expression

Figure 2: Inner structures of certain types of node in a Python AST

This JSON-based representation of Python ASTs is relatively clean and consistent, making it easy to
traverse, manipulate and enrich. The explicit labeling of node types and clear hierarchical organization facilitate
downstream processing tasks such as normalization, constraint extraction and serialization. Moreover, the
Python AST is relatively compact and semantically transparent, owing to the language’s syntactic simplicity
and dynamic nature.

In contrast, C++ presents a much more complex landscape. Its statistically typed nature, intricate grammar
and reliance on compile-time constructs, e.g., templates, operator overloading, type deduction, result in ASTs
that are significantly deeper, more verbose and less uniform. As a result, while Clang’s JSON output provides
comprehensive syntactic and semantic information, its structure tends to be harder to interpret and more
difficult to normalize directly. This complexity necessitates additional pre-processing and post-processing steps
to extract meaningful and consistent representations across code samples.

As a part of the LLVM Compiler Infrastructure Project, Clang front-end supports exporting structured
AST in JSON format via the -Xclang -ast-dump=json option. Clang performs full semantic analysis during
parsing, enabling the extraction of detailed type information, declaration scopes and template instantiations.
This makes it an ideal tool for constructing rich, context-aware ASTs, while also leaving us a few challenges.

A notable compatibility issue in pre-processing C++ code is the frequent use of the non-standard header
bits/stdc++.h, which is common in competitive programming due to its convenience in aggregating most stan-
dard library headers. However, this header is GCC-specific and not supported by Clang, resulting in fatal errors
during parsing. To resolve this, we implement a normalization step that replaces #include<bits/stdc++.h>
with an explicit list of standard headers before invoking Clang. This transformation preserves program se-
mantics while significantly improving the pipeline’s ability to process a broader range of C++ examples in the
dataset.
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Another major challenge arises from the structural complexity of Clang’s AST output. Although, like
Python, each node in the JSON is labeled by its ”kind” field indicating its syntactic category, Clang often
collapses the internal structure of a syntax node into a generic ”inner” list without explicitly distinguishing
the roles of its children. As a result, it is often impossible to infer the semantic function of sub-nodes from the
JSON alone, e.g., whether a child represents the initializer, the condition, the increment, or the body part of
a for-loop statement.

{

  : ,

  : [

    {  }, 
    {  }, 
    
    {  },

    {  } 
  ],

  
}

"kind"
"inner"

"IfStmt"

/* condition */ // 1

/* condition variable declaration */ // 2


// Either 1 or 2 can be present

/* then statement */
/* else statement */ // May or may not exist


// Others


(a) If statement

{

  : ,

  : [

    {  }, 
    {  }, 
    
    {  },

    {  },

    {  }

  ],

  
}

"kind"
"inner"

"ForStmt"

/* initializer */ // 1

/* condition variable declaration */ // 2


// Either 1 or 2 is empty

/* condition expression */
/* increment */
/* body statement */

// Others


(b) For statement

Figure 3: Inner structures of certain types of node in a C++ AST

To address this, we conducted an in-depth study of Clang’s official documentation and source code, combined
with numeral examples of the ASTs extracted with Clang, to understand the internal AST design. Figure 3
reveals the major hierarchical structures of if-statement and for-statement in the C++ ASTs. This effort
informed the development of our enriched AST schema, which aims to explicitly capture as many as C++
language constructs and roles as possible during the transformation and enrichment process.

To summarize, these structural differences between Python and C++ AST representations highlight the
need for language-specific handling in our pipeline. By leveraging existing parsers and applying targeted
normalization and identification of internal structures, further semantic enrichment can be applied to our
unified structural foundation for either language.

3.4 Enriched AST Schema Design

While raw ASTs capture the syntactic structure of code, they often lack sufficient semantic context for high-
quality program understanding and generation. To bridge the gap, we design and implement an enriched AST
schema that augments the baseline trees with additional program-level information—such as type annotations,
variable lifecycles and available APIs—collected through static analysis. This enriched representation provides
the model with deeper insight into program semantics and improves its ability to generate well-formed code
structures.

Given the significant differences between C++ and Python in type systems, scoping rules, compilation
models and AST structures, we design language-specific enrichment procedures tailored to each language. The
remainder of this part outlines our approach for the languages individually.

3.4.1 Enriched AST Schema for C++

Clang exposes a highly detailed and expansive AST type system for C++, covering the full breadth of the
language’s syntax and semantics. Given this complexity, implementing a comprehensive resolution pipeline
that handles every possible AST node is impractical. To address this, we adopt a data-driven incremental
strategy grounded in empirical observation of real-world code.

We begin by sampling a small subset of C++ programs from the dataset and manually analyzing the Clang
ASTs generated from them. Based on this sample, we identify the syntactic structures present in the ASTs,
which can be categorized into statements, expressions and declarations, and implement corresponding handlers
in our enrichment pipeline. We then expand the sampling range and process new programs using the existing
implementation. For any parseable code samples that contain yet-unhandled node types, we collect them and
progressively extend our support to cover these new constructs. This iterative process continues until the
system achieves a stable coverage across a significant portion of the dataset.

To keep the enrichment process focused and maintainable, we constrain our analysis to the body of the main
function in each program. This choice is motivated primarily by implementation complexity: supporting the
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full range of C++ constructs—including classes, templates and lambda expressions—would require substantial
engineering effort beyond the scope of this project. In contrast, the main function typically contains sufficient
structural variety to exercise key aspects of our enrichment scheme, including control flow, function calls,
variable declarations and references, and type resolution. By limiting out target to this scope, we reduce
parsing and normalization complexity while retaining a meaningful subset of C++ program semantics.

One of the central components of our AST enrichment strategy is type annotation. Fortunately, Clang
performs comprehensive type inference and resolution during parsing, and encodes this information directly
into the JSON-formatted AST. For most syntax nodes, Clang provides a qualified type, e.g., with const or
reference modifiers, and/or a desugared type, which resolves typedef’s and syntactic sugar to their canonical
forms. This built-in support significantly reduces the burden of implementing custom type analysis. In our
enrichment pipeline, these annotations are included as explicit fields in the enriched schema, where desugared
types are prioritized over qualified types to maintain canonical consistency across nodes. This type information
serves as a crucial inductive bias during model training, helping ensure that generated ASTs are not only
syntactically valid but also type-consistent.

Another key aspect of our enrichment schema is the incorporation of statement execution order. While ASTs
represent code as hierarchical tree structures, compound statements, e.g., function bodies or code blocks, are
typically modeled as unordered lists of child nodes. However, in imperative programming languages like C++,
the order of statements is semantically critical: it determines data dependencies, variable life cycles and control
flow semantics. To capture this sequential aspect explicitly, we introduce virtual edges in the enriched AST to
represent the execution order among statements within compound statement structures. These edges connect
sibling nodes to reflect their original order in the source code, without altering the underlying tree structure.
By augmenting the ASTs in this way, we enable downstream models to incorporate sequential reasoning over
statement execution, which is essential for tasks such as variable reference resolution and instruction reordering.

In order to capture data flow and identifier resolution within a program, we enrich the AST with explicit
variable reference links. When compiling a C++ source file, Clang creates a unique VarDecl node for each
variable declaration. All subsequent references to that variable—whether in expressions, assignments, or control
conditions—are internally linked to the same memory-resident declaration node during the compilation process.
In the JSON-formatted ASTs exported by Clang, this internal linkage is preserved via a unique id field assigned
to each node. Reference nodes, e.g., DeclRefExpr, contain a referencedDecl field pointing to the id of the
corresponding VarDecl. We leverage this mechanism to add virtual reference edges that explicitly connect each
reference to its declared variable. These edges are included in the enriched AST structure to expose variable
bindings and usage scopes, enabling downstream models to reason over read/write dependencies and identifier
resolution more effectively.

[Compound]

Stmt #1

VarDecl Ref

Stmt #2...

... ...

(a) Valid reference

[Compound]

Stmt #1

Ref VarDecl

Stmt #2...

... ...

(b) Invalid reference

Figure 4: An example of reference validity check

By combining the sequential virtual edges with variable reference links, the enriched ASTs enable static
validation of reference legality. Specifically, when validate a variable reference, we trace both the reference
node and its corresponding declaration node upward the in the AST until they converge at a common enclosing
compound statement. Within this compound structure, we then compare their positions in the sequential
execution order of child statements. A reference is considered semantically valid only if the declaration node
appears earlier than the reference node within the compound statement’s internal execution sequence. This
check ensures that all variable usages respect lexical and control-flow ordering constraints. Figure 4 shows an
example where we apply such strategy to checking the reference validity.

Finally, one of the most challenging aspects of processing C++ ASTs lies in handling references to non-user-
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defined entities, particularly those introduced via standard library headers. Unlike user-defined functions and
variables, which typically exhibit simple and localized structure, standard headers such as <iostream> bring in
a vast amount of additional code. When compiled with Clang, these headers are fully expanded and embedded
into the AST, resulting in extreme verbosity. For example, including <iostream> alone can lead to a JSON
AST exceeding 400MB in size and spanning nearly 8 million lines—most of which are irrelevant to the user’s
original program logic.

To manage this complexity, our current pipeline focuses exclusively on user-defined declarations. All refer-
ences to standard library functions or variables are marked as external references, without attempting to resolve
their full definitions or include them in the enriched AST. This design choice significantly reduces memory usage
and processing time, while retaining the essential program structure necessary for our modeling tasks.

Overall, our C++ AST enrichment module combines syntax-guided filtering, type annotation extraction,
execution-order reconstruction, and variable reference resolution to produce a semantically aware and struc-
turally consistent representation. By carefully balancing coverage and complexity, we construct an enriched
AST schema that preserves essential program semantics while significantly reducing the size of the representa-
tions,making it practical for large-scale generative modeling.

3.4.2 Enriched AST Schema for Python

Compared to C++, Python is a dynamically typed scripting language with minimal compile-time type enforce-
ment. As a result, its native AST representation lacks many of the structural and semantic constraints that are
crucial for static code analysis and program understanding. In particular, the standard ast module provides
only a shallow syntactic view of the code and does not include type information or resolved symbol references.

To overcome these limitations, we adopt the astroid library [25] from the pylint toolchain as a replacement
for the default AST parser. astroid offers a richer and more uniform AST structure, and provides access to
advanced static analysis utilities, such as type inference and scope resolution. However, these semantic features
are exposed only as procedural interfaces and are not embedded directly into the AST itself. As part of our
enrichment process, we systematically integrate this semantic information into the ASTs as explicit annotations.

Specifically, we apply the astypes library [26] to perform static type inference over the astroid-based AST.
The inference process combines multiple strategies:

• Literal inference: The type of syntactic literals is directly inferred based on their form.

• Assumption-based inference: For common Python built-in constructs, such as lists and dictionaries,
astypes makes practical assumptions based on typical usage patterns.

• Semantic inference via astroid: astypes delegates to astroid’s symbolic evaluation when type
information cannot be inferred locally.

• Function return inference: If the value is determined to be a function call, astypes locates the
function definition and retrieves its return annotation, if present.

• typeshed fallback: If the resolved function lacks an explicit annotation, astypes queries typeshed to
retrieve known return types of a standard or built-in functions.

Although limited, this process enables consistent and lightweight type annotation across the entire AST. In
addition to type inference, we enrich the AST with reference links based on lexical scope resolution. Specifi-
cally, for every astroid.Name node, which includes variable, function, or other identifier references, we apply
astroid’s lookup function to resolve all possible symbol bindings visible at that point in the source code. This
returns a list of candidate AST nodes corresponding to the entities that the identifier might refer to.

Based on our observation, we annotate each Name node with a reference virtual edge (marked as ref in
the visualization) pointing to the closest matching declaration node among the candidates. This allows us
to capture not only variable references, but also function calls and symbolic references to global or nonlocal
bindings. In contrast to C++, where Clang’s AST provides direct and unambiguous references between usage
and declaration nodes via unique id-based linkage, Python requires us to reconstruct such connections through
static resolution. Our method offers a best-effort approximation of these bindings and embeds them into the
AST, enabling richer downstream reasoning just like we have for C++, while accommodating Python’s dynamic
name resolution semantics.

Similar to our approach for C++, we introduce sequential virtual edges between sibling statements in Python
to capture execution order. Together with reference edges, this structure enabled the detection of reference
legality by checking whether an identifier is used only after its definition. These lightweight yet expressive
augmentations bring Python’s dynamic typed AST representation closer to the semantic richness needed for
structured code generation.
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3.5 Summary

In this project, we design a multi-stage pipeline for converting raw source code into enriched AST representations
suitable for structure-aware generative model training. Starting from dataset preprocessing, we extract ASTs
for both C++ and Python source code using language-specific tools. We then enrich these ASTs by integrating
semantic features that are not directly present in the original syntax trees. Across both languages, we implement
a common set of augmentations: type annotations, reference edges linking identifiers to their declarations, and
sequential virtual edges encoding statement execution order.

While the enrichment goals are consistent, the implementation differs due to fundamental differences in
language design and toolchain capabilities. C++ benefits from a strict and complete type system, and Clang
provides precise and fully resolved type information for nearly all expressions at compile time. In contrast,
Python lacks static typing by default, and we rely on static program analysis and heuristic assumptions.
Despite covering many common cases, this inference process cannot match the completeness or reliability of
C++’s type annotations.

Similarly, for identifier resolution, Clang encodes exact symbol bindings directly into the AST through
memory-resident identifiers, whereas Python requires scope analysis and approximation. Though this method
introduces some ambiguity, it allows for constructing reference edges that are structurally comparable to those
in the C++ pipeline.

Despite these differences, our enrichment strategies achieve functionally similar feature sets for both lan-
guages. By adapting to the strengths and limitations of each language ecosystem, we produce semantically
enriches ASTs with consistent structural features, thus enabling unified training and evaluation across a het-
erogeneous, multi-language dataset.

4 Implementation and Preliminary Results

This section describes the implementation of our AST enrichment pipeline and presents preliminary results
demonstrating its coverage and effectiveness. We discuss the platforms and tooling used to build the prototype,
and the range of language features supported in our prototype. Visualizations are also provided to highlight
the difference in the AST structures before and after enrichment introduced by our pipeline.

4.1 Pipeline Prototyping

We implemented our AST enrichment pipeline using different toolchains and platforms tailored to each pro-
gramming languages.

For C++, we invoke the Clang frontend via command-line interface to generate the raw AST in JSON format
using the -Xclang -ast-dump=json flags. The resulting output is then processed on the .NET platform, where
we parse the JSON and reconstruct the AST structure in memory. Each AST node type is mapped to a
corresponding .NET object type, and its internal structured is resolved with the guidance of Clang AST’s
documentation. We additionally recover reference relationships between nodes and prune irrelevant metadata,
e.g., source mapping and comment. The final output retains only the topological structure of the AST and the
enriched semantic features we introduce.

For Python, all processing is conducted natively within the Python runtime. We use the astroid library to
parse the source code into an extensible AST structure, and integrate enrichment steps via the astypes library
and scope tracing as described in Section 3.4.2. The enriched AST is then exported into JSON format using a
custom serialization routine, preserving node types, hierarchy, and added semantic annotations.

For both languages, we implement batch processing scripts to automate AST extraction and enrichment
across large-scale datasets. In addition, we used the Graphviz toolchain [27] to visualize ASTs before and
after enrichment, facilitating both debugging and qualitative comparison. All components of our pipeline,
including parsers, enrichers, batch tools and visualization utilities, have been open-sourced on GitHub to
support reproducibility and further development [28].

4.2 Language Feature Coverage and Testing

For C++, we compiled a comprehensive list of all AST node types currently supported by our enrichment
pipeline. These includes fundamental syntactic constructs such as declarations, control flow statements and
expressions. Each supported node type is documented in Table 2, along with a brief description of its function
and a link to the corresponding page in the official Clang AST documentation. This table serves both as a
reference and as a record of the pipeline’s current syntactic coverage.

10



As noted in Section 3.4.1, we excluded AST nodes related to declarations of classes and lambda expressions
due to the complexity of their internal structure and the scope limitations of this prototype. These constructs,
while important in general-purpose C++ development, are not frequently used in our dataset and fall outside
the focus of our current implementation.

Table 2: Supported C++ AST node types in the enrichment pipeline

Node Type Description Ref.

ArraySubscriptExpr Array Subscripting. Link
BinaryOperator A builtin binary operation expression such as x + y or x <= y. Link
BindingDecl A binding in a decomposition declaration. Link
BreakStmt This represents a break. Link
CallExpr Represents a function call. Link
CaseStmt Represent a case statement. Link
CharacterLiteral - Link
CompoundAssignOperator Keeps track of the type the operation is performed in. Link
CompoundStmt Represents a group of statements like { stmt stmt }. Link
ConditionalOperator The ?: ternary operator. Link
ConstantExpr An expression in a constant context, possibly evaluated. Link
ContinueStmt This represents a continue. Link
CStyleCastExpr A C-style cast expression. Link
CXXBindTemporaryExpr Binding an expression to a temporary. Link
CXXBoolLiteralExpr A boolean literal. Link
CXXCatchStmt A C++ catch block. Link
CXXConstructExpr A call to a C++ constructor. Link
CXXDefaultArgExpr A default argument. Link
CXXDefaultInitExpr Use of a default initializer. Link
CXXDependentScopeMemberExpr A member access where the referenced member is unresolved. Link
CXXDestructorDecl A C++ class destructor. Link
CXXForRangeStmt C++ ranged for loop. Link
CXXFunctionalCastExpr A cast using functional notation. Link
CXXMemberCallExpr A call to a member function. Link
CXXMethodDecl A static or instance method declaration. Link
CXXNewExpr Represents a new-expression. Link
CXXNullPtrLiteralExpr The null pointer literal. Link
CXXOperatorCallExpr A call to an overloaded operator. Link
CXXStaticCastExpr A static cast expression. Link
CXXStdInitializerListExpr Construction of std::initializer list<T> from array. Link
CXXTemporaryObjectExpr C++ cast expression that builds a temporary. Link
CXXTryStmt A C++ try block. Link
DeclRefExpr A reference to a declared entity. Link
DeclStmt A declaration as a statement. Link
DecompositionDecl A decomposition declaration. Link
DefaultStmt - Link
DoStmt A do/while loop statement. Link
EnumConstantDecl An enum constant definition. Link
ExprWithCleanups Expression introducing cleanups. Link
FloatingLiteral - Link
ForStmt A for loop statement. Link
FunctionDecl A function declaration or definition. Link
GNUNullExpr GNU null extension. Link
IfStmt An if/then/else statement. Link
ImplicitCastExpr Represents an implicit type conversion. Link
ImplicitValueInitExpr Implicit value initialization. Link
InitListExpr C/C++ initializer list. Link
IntegerLiteral - Link
MaterializeTemporaryExpr Temporary written into memory. Link

11

https://clang.llvm.org/doxygen/classclang_1_1ArraySubscriptExpr.html
https://clang.llvm.org/doxygen/classclang_1_1BinaryOperator.html
https://clang.llvm.org/doxygen/classclang_1_1BindingDecl.html
https://clang.llvm.org/doxygen/classclang_1_1BreakStmt.html
https://clang.llvm.org/doxygen/classclang_1_1CallExpr.html
https://clang.llvm.org/doxygen/classclang_1_1CaseStmt.html
https://clang.llvm.org/doxygen/classclang_1_1CharacterLiteral.html
https://clang.llvm.org/doxygen/classclang_1_1CompoundAssignOperator.html
https://clang.llvm.org/doxygen/classclang_1_1CompoundStmt.html
https://clang.llvm.org/doxygen/classclang_1_1ConditionalOperator.html
https://clang.llvm.org/doxygen/classclang_1_1ConstantExpr.html
https://clang.llvm.org/doxygen/classclang_1_1ContinueStmt.html
https://clang.llvm.org/doxygen/classclang_1_1CStyleCastExpr.html
https://clang.llvm.org/doxygen/classclang_1_1CXXBindTemporaryExpr.html
https://clang.llvm.org/doxygen/classclang_1_1CXXBoolLiteralExpr.html
https://clang.llvm.org/doxygen/classclang_1_1CXXCatchStmt.html
https://clang.llvm.org/doxygen/classclang_1_1CXXConstructExpr.html
https://clang.llvm.org/doxygen/classclang_1_1CXXDefaultArgExpr.html
https://clang.llvm.org/doxygen/classclang_1_1CXXDefaultInitExpr.html
https://clang.llvm.org/doxygen/classclang_1_1CXXDependentScopeMemberExpr.html
https://clang.llvm.org/doxygen/classclang_1_1CXXDestructorDecl.html
https://clang.llvm.org/doxygen/classclang_1_1CXXForRangeStmt.html
https://clang.llvm.org/doxygen/classclang_1_1CXXFunctionalCastExpr.html
https://clang.llvm.org/doxygen/classclang_1_1CXXMemberCallExpr.html
https://clang.llvm.org/doxygen/classclang_1_1CXXMethodDecl.html
https://clang.llvm.org/doxygen/classclang_1_1CXXNewExpr.html
https://clang.llvm.org/doxygen/classclang_1_1CXXNullPtrLiteralExpr.html
https://clang.llvm.org/doxygen/classclang_1_1CXXOperatorCallExpr.html
https://clang.llvm.org/doxygen/classclang_1_1CXXStaticCastExpr.html
https://clang.llvm.org/doxygen/classclang_1_1CXXStdInitializerListExpr.html
https://clang.llvm.org/doxygen/classclang_1_1CXXTemporaryObjectExpr.html
https://clang.llvm.org/doxygen/classclang_1_1CXXTryStmt.html
https://clang.llvm.org/doxygen/classclang_1_1DeclRefExpr.html
https://clang.llvm.org/doxygen/classclang_1_1DeclStmt.html
https://clang.llvm.org/doxygen/classclang_1_1DecompositionDecl.html
https://clang.llvm.org/doxygen/classclang_1_1DefaultStmt.html
https://clang.llvm.org/doxygen/classclang_1_1DoStmt.html
https://clang.llvm.org/doxygen/classclang_1_1EnumConstantDecl.html
https://clang.llvm.org/doxygen/classclang_1_1ExprWithCleanups.html
https://clang.llvm.org/doxygen/classclang_1_1FloatingLiteral.html
https://clang.llvm.org/doxygen/classclang_1_1ForStmt.html
https://clang.llvm.org/doxygen/classclang_1_1FunctionDecl.html
https://clang.llvm.org/doxygen/classclang_1_1GNUNullExpr.html
https://clang.llvm.org/doxygen/classclang_1_1IfStmt.html
https://clang.llvm.org/doxygen/classclang_1_1ImplicitCastExpr.html
https://clang.llvm.org/doxygen/classclang_1_1ImplicitValueInitExpr.html
https://clang.llvm.org/doxygen/classclang_1_1InitListExpr.html
https://clang.llvm.org/doxygen/classclang_1_1IntegerLiteral.html
https://clang.llvm.org/doxygen/classclang_1_1MaterializeTemporaryExpr.html


Node Type Description Ref.

MemberExpr Structure and union members. Link
ParenExpr A parenthesized expression. Link
ParmVarDecl A function parameter. Link
ReturnStmt A return statement. Link
StringLiteral A string literal. Link
SwitchStmt A switch statement. Link
UnaryExprOrTypeTraitExpr Expression involving type traits or sizeof. Link
UnaryOperator A unary expression/operator. Link
VarDecl A variable declaration or definition. Link
WhileStmt A while loop statement. Link

For Python, our enrichment pipeline supports a broad range of AST node types commonly found in script-
based and algorithmic programming. These include module and function definitions, control flow structures,
expression, assignments and import statements. Special nodes like Comprehensions, DictComp’s, ListComp’s
and SetComp’s are also supported. Table 3 lists all supported node types, with the same columns as we have
for the C++ AST node type coverage.

Thanks to Python’s comparatively simple and uniform syntax, we were able to fully implement enrichment
support for both class and lambda expression nodes. As a result, our Python-target pipeline implementation
achieves near-complete coverage over the node types commonly encountered in the dataset.

Table 3: Supported Python AST node types in the enrichment pipeline

Node Type Description Ref.

Assert Class representing an ast.Assert node. Link
Assign Class representing an ast.Assign node. Link
AssignAttr Variation of ast.Assign representing assignment to an attribute. Link
AssignName Variation of ast.Assign representing assignment to a name. Link
Attribute Class representing an ast.Attribute node. Link
AugAssign Class representing an ast.AugAssign node. Link
BinOp Class representing an ast.BinOp node. Link
BoolOp Class representing an ast.BoolOp node. Link
Break Class representing an ast.Break node. Link
Call Class representing an ast.Call node. Link
ClassDef Class representing an ast.ClassDef node. Link
Compare Class representing an ast.Compare node. Link
Comprehension Class representing an ast.comprehension node. Link
Const Class representing any constant including num, str, bool, None, bytes. Link
Continue Class representing an ast.Continue node. Link
Delete Class representing an ast.Delete node. Link
Dict Class representing an ast.Dict node. Link
DictComp Class representing an ast.DictComp node. Link
ExceptHandler Class representing an ast.ExceptHandler node. Link
Expr Class representing an ast.Expr node. Link
For Class representing an ast.For node. Link
FormattedValue Class representing an ast.FormattedValue node. Link
FunctionDef Class representing an ast.FunctionDef. Link
GeneratorExp Class representing an ast.GeneratorExp node. Link
Global Class representing an ast.Global node. Link
If Class representing an ast.If node. Link
IfExp Class representing an ast.IfExp node. Link
Import Class representing an ast.Import node. Link
ImportFrom Class representing an ast.ImportFrom node. Link
JoinedStr Represents a list of string expressions to be joined. Link
Lambda Class representing an ast.Lambda node. Link
List Class representing an ast.List node. Link
ListComp Class representing an ast.ListComp node. Link
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Node Type Description Ref.

Module Class representing an ast.Module node. Link
Name Class representing an ast.Name node. Link
Nonlocal Class representing an ast.Nonlocal node. Link
Return Class representing an ast.Return node. Link
Set Class representing an ast.Set node. Link
SetComp Class representing an ast.SetComp node. Link
Slice Class representing an ast.Slice node. Link
Starred Class representing an ast.Starred node. Link
Subscript Class representing an ast.Subscript node. Link
Try Class representing a ast.Try node. Link
Tuple Class representing an ast.Tuple node. Link
UnaryOp Class representing an ast.UnaryOp node. Link
While Class representing an ast.While node. Link

To quantitatively evaluate the coverage, effectiveness and stability of our enrichment pipeline, we imple-
mented a testing framework that integrates directly with the HuggingFace dataset APIs. This framework allows
us to automatically fetch code samples from the original nvidia/OpenCodeReasoning-2 dataset and apply our
full extraction and enrichment pipeline in a reproducible manner.

We conducted separate tests on 1,000 Python and 1,000 C++ code samples from the dataset. Each sample
was processed through its respective AST pipeline, and the results were visualized using Graphviz to verify
structural correctness and annotation consistency. In the appendix of this report, figures that illustrate rep-
resentative code samples and their corresponding ASTs before and after enrichment are included. Figures 5
and 6 show the original source code of a C++ sample and a Python sample used for testing. Figures 7 and
9 display the structure of the original plain ASTs generated by Clang AST and ast module of the Python
language services. In contrast, figures 8 and 10 show the enriched ASTs, where type annotations, reference
virtual edges and sequential execution order are incorporated. These visualizations serve as concrete examples
of the structural and semantic enhancements designed in Section 3.4 and implemented in Section 4.1.

Out of the 1,000 C++ samples tested, 843 were successfully processed by our pipeline, with their ASR
structures fully recognized and enriched. Among the remaining 157 samples, 96 involved unimplemented
lambda expression nodes, which were intentionally excluded from our prototype, as noted in Section 3.4.1. 49
sampled failed compilation, which may stem from syntactic or semantic issues in the original code, or the use of
language features unsupported by Clang—despite our preprocessing step replacing bits/stdc++.h with a list
of standard headers to address the majority of such cases. The final 12 samples involved other C++ constructs
not yet covered by our pipeline.

In contrast, our Python pipeline achieved significantly higher coverage: 999 out 1,000 samples were parsed,
enriched and serialized successfully. The single failure case resulted from a malformed code snippet that could
not be parsed by the astroid parser.

Specifically, considering the limited ability of the astypes library in inferring types for the AST nodes, in
the coverage test above, we also gathered statistics for type inference coverage. We implemented type inference
for a subset of AST nodes that involves expressions, and for each node type, we counted the occurrences and
successful inferences. The results are organized in Table 4.

Table 4: Statistics of type inference in Python AST enrichment

Node Type
# Nodes #Successful Inferences

Success Rate
Total Per Program Total Per Program

AssignName 20621 20.62 6984 6.98 33.87%
Attribute 6122 6.12 780 0.78 12.74%
BinOp 9285 9.29 1996 2.00 21.50%
BoolOp 700 0.70 651 0.65 93.00%
Call 17000 17.00 9370 9.37 55.12%
Compare 4915 4.92 4915 4.92 100.00%
Const 16946 16.95 16946 16.95 100.00%
Dict 163 0.16 163 0.16 100.00%
DictComp 15 0.01 15 0.01 100.00%
FormattedValue 135 0.14 126 0.13 93.33%
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Node Type
# Nodes #Successful Inferences

Success Rate
Total Per Program Total Per Program

GeneratorExp 111 0.11 111 0.11 100.00%
IfExp 321 0.32 259 0.26 80.69%
JoinedStr 86 0.09 86 0.09 100.00%
List 1751 1.75 1751 1.75 100.00%
ListComp 490 0.49 490 0.49 100.00%
Name 55346 55.35 14876 14.88 26.88%
Set 23 0.02 23 0.02 100.00%
SetComp 2 0.00 2 0.00 100.00%
Subscript 7975 7.97 188 0.19 2.36%
Tuple 2846 2.85 2846 2.85 100.00%
UnaryOp 1408 1.41 1316 1.32 93.47%

All 146261 146.26 63894 63.89 43.68%

Please note that all AST nodes whose type is None are excluded in this statistical result due to the handling
mechanism of asytpes which returns None when it encounters a node whose type cannot be inferred. Combined
with this knowledge, data from Table 4 shows that the type inference method we used has excellent outcomes
on constant nodes, comparison expressions, system built-in structural types, e.g., dict and set, and their
comparison, unary/binary operation expressions, formatted strings, and conditional expressions (trinomial
operators), but has very limited capability on other nodes. At the overall level, (at least) 43.68% of the nodes
can be covered by this sort of enrichment.

5 Conclusion and Future Work

The results discussed in Section 4.2 demonstrate the robustness and practical effectiveness of our enrichment
pipeline across both languages. The C++ implementation achieves high structural coverage despite the inher-
ent complexity of the language, while the Python pipeline benefits from the language’s syntactic simplicity and
the flexibility of the toolchain. Together, they validate the feasibility of building multi-language AST enrich-
ment frameworks that adapt to language-specific constraints while producing semantically consistent output
representations.

These results confirm the feasibility of AST enrichment as a practical method for constructing semantically
informed program representations. By generating structurally consistent enriched ASTs across languages, our
pipeline enables the creation of a unified representation space that supports cross-language generalization and
provides a suitable foundation for training structure-aware diffusion models.

During the development of this project, we also surveyed a range of existing analysis frameworks and
static program analyzers. Parsers and their related toolchains such as ANTLR, JavaCC and Tree-Sitter offer
extensible AST extraction capabilities across multiple languages, providing potential alternatives for broader
language support in our future work [29]. In addition, large-scale datasets such as Project CodeNet [30],
originally created for transformer-based code generation, offer valuable insights into data preparation and
representation design. Building on our current pipeline, we plan to explore these tools and resources to find
new opportunities of incorporating proper techniques to construct enriched AST datasets at scale, enabling the
training of our diffusion models for code generation.
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A Test Results

#include
using namespace

int
long long
while >>

long long =
for long long = * <= ++
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Figure 5: C++ Code Sample 1cc047
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Figure 6: Python Code Sample 336cb2
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